z1 = ρλ1, z2 = ρλ2, ... zn = ρλn,

we obtain

ds² = Σdz² + 1{ ( Rsinh ρ) ²− 1 } Σ (zidzk − zkdzi)².
ρ² ρR

Hence when ρ is small, we have approximately

ds² = Σdz² + 1Σ (zidzk − zkdzi)²
3R²

(1).

Considering a surface element through the origin, we may choose our axes so that, for this element,

z3 = z4 = ... = zn = 0.

Thus

dz1² + dz2² + 1(z1dz2 − z2dz1)²
3R²