General Carlos Ibañez employed in 1858-1879, for the measurement of nine base lines in Spain, two apparatus similar to the apparatus previously employed by Porro in Italy; one is complicated, the other simplified. The first, an apparatus of the brothers Brunner of Paris, was a thermometric combination of two bars, one of platinum and one of brass, in length 4 metres, furnished with three levels and four thermometers. Suppose A, B, C three micrometer microscopes very firmly supported at intervals of 4 metres with their axes vertical, and aligned in the plane of the base line by means of a transit instrument, their micrometer screws being in the line of measurement. The measuring bar is brought under say A and B, and those micrometers read; the bar is then shifted and brought under B and C. By repetition of this process, the reading of a micrometer indicating the end of each position of the bar, the measurement is made.
Quite similar apparatus (among others) has been employed by the French and Germans. Since, however, it only permitted a distance of about 300 m. to be measured daily, Ibañez introduced a simplification; the measuring rod being made simply of steel, and provided with inlaid mercury thermometers. This apparatus was used in Switzerland for the measurement of three base lines. The accuracy is shown by the estimated probable errors: ±0.2 μ to ±0.8 μ. The distance measured daily amounts at least to 800 m.
A greater daily distance can be measured with the same accuracy by means of Bessel’s apparatus; this permits the ready measurement of 2000 m. daily. For this, however, it is important to notice that a large staff and favourable ground are necessary. An important improvement was introduced by Edward Jäderin of Stockholm, who measures with stretched wires of about 24 metres long; these wires are about 1.65 mm. in diameter, and when in use are stretched by an accurate spring balance with a tension of 10 kg.[2] The nature of the ground has a very trifling effect on this method. The difficulty of temperature determinations is removed by employing wires made of invar, an alloy of steel (64%) and nickel (36%) which has practically no linear expansion for small thermal changes at ordinary temperatures; this alloy was discovered in 1896 by Benôit and Guillaume of the International Bureau of Weights and Measures at Breteuil. Apparently the future of base-line measurements rests with the invar wires of the Jäderin apparatus; next comes Porro’s apparatus with invar bars 4 to 5 metres long.
Results have been obtained in the United States, of great importance in view of their accuracy, rapidity of determination and economy. For the measurement of the arc of meridian in longitude 98° E., in 1900, nine base lines of a total length of 69.2 km. were measured in six months. The total cost of one base was $1231. At the beginning and at the end of the field-season a distance of exactly 100 m. was measured with R.S. Woodward’s “5-m. ice-bar” (invented in 1891); by means of the remeasurement of this length the standardization of the apparatus was done under the same conditions as existed in the case of the base measurements. For the measurements there were employed two steel tapes of 100 m. long, provided with supports at distances of 25 m., two of 50 m., and the duplex apparatus of Eimbeck, consisting of four 5-m. rods. Each base was divided into sections of about 1000 m.; one of these, the “test kilometre,” was measured with all the five apparatus, the others only with two apparatus, mostly tapes. The probable error was about ±0.8 μ, and the day’s work a distance of about 2000 m. Each of the four rods of the duplex apparatus consists of two bars of brass and steel. Mercury thermometers are inserted in both bars; these serve for the measurement of the length of the base lines by each of the bars, as they are brought into their consecutive positions, the contact being made by an elastic-sliding contact. The length of the base lines may be calculated for each bar only, and also by the supposition that both bars have the same temperature. The apparatus thus affords three sets of results, which mutually control themselves, and the contact adjustments permit rapid work. The same device has been applied to the older bimetallic-compensating apparatus of Bache-Würdemann (six bases, 1847-1857) and of Schott. There was also employed a single rod bimetallic apparatus on F. Porro’s principle, constructed by the brothers Repsold for some base lines. Excellent results have been more recently obtained with invar tapes.
The following results show the lengths of the same German base lines as measured by different apparatus:
| metres. | ||||
| Base at Berlin | 1864 | Apparatus of | Bessel | 2336·3920 |
| ” ” | 1880 | ” | Brunner | ·3924 |
| Base at Strehlen | 1854 | ” | Bessel | 2762·5824 |
| ” ” | 1879 | ” | Brunner | ·5852 |
| Old base at Bonn | 1847 | ” | Bessel | 2133·9095 |
| ” ” | 1892 | ” | ” | ·9097 |
| New base at Bonn | 1892 | ” | ” | 2512·9612 |
| ” ” | 1892 | ” | Brunner | ·9696 |
It is necessary that the altitude above the level of the sea of every part of a base line be ascertained by spirit levelling, in order that the measured length may be reduced to what it would have been had the measurement been made on the surface of the sea, produced in imagination. Thus if l be the length of a measuring bar, h its height at any given position in the measurement, r the radius of the earth, then the length radially projected on to the level of the sea is l(1 − h/r). In the Salisbury Plain base line the reduction to the level of the sea is −0.6294 ft.
| Fig. 1. |
The total number of base lines measured in Europe up to the present time is about one hundred and ten, nineteen of which do not exceed in length 2500 metres, or about 1½ miles, and three—one in France, the others in Bavaria—exceed 19,000 metres. The question has been frequently discussed whether or not the advantage of a long base is sufficiently great to warrant the expenditure of time that it requires, or whether as much precision is not obtainable in the end by careful triangulation from a short base. But the answer cannot be given generally; it must depend on the circumstances of each particular case. With Jäderin’s apparatus, provided with invar wires, bases of 20 to 30 km. long are obtained without difficulty.
In working away from a base line ab, stations c, d, e, f are carefully selected so as to obtain from well-shaped triangles gradually increasing sides. Before, however, finally leaving the base line, it is usual to verify it by triangulation thus: during the measurement two or more points, as p, q (fig. 1), are marked in the base in positions such that the lengths of the different segments of the line are known; then, taking suitable external stations, as h, k, the angles of the triangles bhp, phq, hqk, kqa are measured. From these angles can be computed the ratios of the segments, which must agree, if all operations are correctly performed, with the ratios resulting from the measures. Leaving the base line, the sides increase up to 10, 30 or 50 miles occasionally, but seldom reaching 100 miles. The triangulation points may either be natural objects presenting themselves in suitable positions, such as church towers; or they may be objects specially constructed in stone or wood on mountain tops or other prominent ground. In every case it is necessary that the precise centre of the station be marked by some permanent mark. In India no expense is spared in making permanent the principal trigonometrical stations—costly towers in masonry being erected. It is essential that every trigonometrical station shall present a fine object for observation from surrounding stations.