Horizontal Angles.

In placing the theodolite over a station to be observed from, the first point to be attended to is that it shall rest upon a perfectly solid foundation. The method of obtaining this desideratum must depend entirely on the nature of the ground; the instrument must if possible be supported on rock, or if that be impossible a solid foundation must be obtained by digging. When the theodolite is required to be raised above the surface of the ground in order to command particular points, it is necessary to build two scaffolds,—the outer one to carry the observatory, the inner one to carry the instrument,—and these two edifices must have no point of contact. Many cases of high scaffolding have occurred on the English Ordnance Survey, as for instance at Thaxted church, where the tower, 80 ft. high, is surmounted by a spire of 90 ft. The scaffold for the observatory was carried from the base to the top of the spire; that for the instrument was raised from a point of the spire 140 ft. above the ground, having its bearing upon timbers passing through the spire at that height. Thus the instrument, at a height of 178 ft. above the ground, was insulated, and not affected by the action of the wind on the observatory.

At every station it is necessary to examine and correct the adjustments of the theodolite, which are these: the line of collimation of the telescope must be perpendicular to its axis of rotation; this axis perpendicular to the vertical axis of the instrument; and the latter perpendicular to the plane of the horizon. The micrometer microscopes must also measure correct quantities on the divided circle or circles. The method of observing is this. Let A, B, C ... be the stations to be observed taken in order of azimuth; the telescope is first directed to A and the cross-hairs of the telescope made to bisect the object presented by A, then the microscopes or verniers of the horizontal circle (also of the vertical circle if necessary) are read and recorded. The telescope is then turned to B, which is observed in the same manner; then C and the other stations. Coming round by continuous motion to A, it is again observed, and the agreement of this second reading with the first is some test of the stability of the instrument. In taking this round of angles—or “arc,” as it is called on the Ordnance Survey—it is desirable that the interval of time between the first and second observations of A should be as small as may be consistent with due care. Before taking the next arc the horizontal circle is moved through 20° or 30°; thus a different set of divisions of the circle is used in each arc, which tends to eliminate the errors of division.

It is very desirable that all arcs at a station should contain one point in common, to which all angular measurements are thus referred,—the observations on each arc commencing and ending with this point, which is on the Ordnance Survey called the “referring object.” It is usual for this purpose to select, from among the points which have to be observed, that one which affords the best object for precise observation. For mountain tops a “referring object” is constructed of two rectangular plates of metal in the same vertical plane, their edges parallel and placed at such a distance apart that the light of the sky seen through appears as a vertical line about 10″ in width. The best distance for this object is from 1 to 2 miles.

This method seems at first sight very advantageous; but if, however, it be desired to attain the highest accuracy, it is better, as shown by General Schreiber of Berlin in 1878, to measure only single angles, and as many of these as possible between the directions to be determined. Division-errors are thus more perfectly eliminated, and errors due to the variation in the stability, &c., of the instruments are diminished. This method is rapidly gaining precedence.

The theodolites used in geodesy vary in pattern and in size—the horizontal circles ranging from 10 in. to 36 in. in diameter. In Ramsden’s 36-in. theodolite the telescope has a focal length of 36 in. and an aperture of 2.5 in., the ordinarily used magnifying power being 54; this last, however, can of course be changed at the requirements of the observer or of the weather. The probable error of a single observation of a fine object with this theodolite is about 0″.2. Fig. 2 represents an altazimuth theodolite of an improved pattern used on the Ordnance Survey. The horizontal circle of 14-in. diameter is read by three micrometer microscopes; the vertical circle has a diameter of 12 in., and is read by two microscopes. In the great trigonometrical survey of India the theodolites used in the more important parts of the work have been of 2 and 3 ft. diameter—the circle read by five equidistant microscopes. Every angle is measured twice in each position of the zero of the horizontal circle, of which there are generally ten; the entire number of measures of an angle is never less than 20. An examination of 1407 angles showed that the probable error of an observed angle is on the average ±0″.28.

For the observations of very distant stations it is usual to employ a heliotrope (from the Gr. ἥλιος, sun; τρόπος, a turn), invented by Gauss at Göttingen in 1821. In its simplest form this is a plane mirror, 4, 6, or 8 in. in diameter, capable of rotation round a horizontal and a vertical axis. This mirror is placed at the station to be observed, and in fine weather it is kept so directed that the rays of the sun reflected by it strike the distant observing telescope. To the observer the heliotrope presents the appearance of a star of the first or second magnitude, and is generally a pleasant object for observing.

Observations at night, with the aid of light-signals, have been repeatedly made, and with good results, particularly in France by General François Perrier, and more recently in the United States by the Coast and Geodetic Survey; the signal employed being an acetylene bicycle-lamp, with a lens 5 in. in diameter. Particularly noteworthy are the trigonometrical connexions of Spain and Algeria, which were carried out in 1879 by Generals Ibañez and Perrier (over a distance of 270 km.), of Sicily and Malta in 1900, and of the islands of Elba and Sardinia in 1902 by Dr Guarducci (over distances up to 230 km.); in these cases artificial light was employed: in the first case electric light and in the two others acetylene lamps.

Fig. 2.—Altazimuth Theodolite.

Astronomical Observations.