2. Past Processes.—The abundant well-preserved marine shells exposed among the upraised Tertiary and post-Tertiary deposits in the countries bordering the Mediterranean are not infrequently alluded to in Greek and Latin literature. Occurrences of fossils. Xenophanes of Colophon (614 B.C.) noticed the occurrence of shells and other marine productions inland among the mountains, and inferred from them that the land had risen out of the sea. A similar conclusion was drawn by Xanthus the Lydian (464 B.C.) from shells like scallops and cockles, which were found far from the sea in Armenia and Lower Phrygia. Herodotus, Eratosthenes, Strato and Strabo noted the vast quantities of fossil shells in different parts of Egypt, together with beds of salt, as evidence that the sea had once spread over the country. But by far the most philosophical opinions on the past mutations of the earth’s surface are those expressed by Aristotle in the treatise already cited. Reviewing the evidence of these changes, he recognized that the sea now covers tracts that were once dry land, and that land will one day reappear where there is now sea. These alternations are to be regarded as following each other in a certain order and periodicity. But they are apt to escape our notice because they require successive periods of time, which, compared with our brief existence, are of enormous duration, and because they are brought about so imperceptibly that we fail to detect them in progress. In a celebrated passage in his Metamorphoses, Ovid puts into the mouth of the philosopher Pythagoras an account of what was probably regarded as the Pythagorean view of the subject in the Augustan age. It affirms the interchange of land and sea, the erosion of valleys by descending rivers, the washing down of mountains into the sea, the disappearance of the rivers and the submergence of land by earthquake movements, the separation of some islands from, and the union of others with, the mainland, the uprise of hills by volcanic action, the rise and extinction of burning mountains. There was a time before Etna began to glow, and the time is coming when the mountain will cease to burn.
From this brief sketch it will be seen that while the ancients had accumulated a good deal of information regarding the occurrence of geological changes, their interpretations of the phenomena were to a considerable extent mere fanciful speculation. They had acquired only a most imperfect conception of the nature and operation of the geological processes; and though many writers realized that the surface of the earth has not always been, and will not always remain, as it is now, they had no glimpse of the vast succession of changes of that surface which have been revealed by geology. They built hypotheses on the slenderest basis of fact, and did not realize the necessity of testing or verifying them.
Progress of Geological Conceptions in the Middle Ages.—During the centuries that succeeded the fall of the Western empire little progress was made in natural science. The schoolmen in the monasteries and other seminaries were content to take their science from the literature of Greece and Rome. The Arabs, however, not only collected and translated that literature, but in some departments made original observations themselves. To one of the most illustrious of their number, Avicenna, the translator of Aristotle, a treatise has been ascribed, in which singularly modern ideas are expressed regarding mountains, some of which are there stated to have been produced by an uplifting of the ground, while others have been left prominent, owing to the wearing away of the softer rocks around them. In either case, it is confessed that the process would demand long tracts of time for its completion.
After the revival of learning the ancient problem presented by fossil shells imbedded in the rocks of the interior of many countries received renewed attention. But the conditions for its solution were no longer what they had been in the days of the philosophers of antiquity. Men were not now free to adopt and teach any doctrine they pleased on the subject. The Christian church had meanwhile arisen to power all over Europe, and adjudged as heretics all who ventured to impugn any of her dogmas. She taught that the land and the sea had been separated on the third day of creation, before the appearance of any animal life, which was not created until the fifth day. To assert that the dry land is made up in great part of rocks that were formed in the sea, and are crowded with the remains of animals, was plainly to impugn the veracity of the Bible. Again, it had come to be the orthodox belief that only somewhere about 6000 years had elapsed since the time of Adam and Eve. If any thoughtful observer, impressed with the overwhelming force of the evidence that the fossiliferous formations of the earth’s crust must have taken long periods of time for their accumulation, ventured to give public expression to his conviction, he ran considerable risk of being proceeded against as a heretic. It was needful, therefore, to find some explanation of the facts of nature, which would not run counter to the ecclesiastical system of the day. Various such interpretations were proposed, doubtless in an honest endeavour at reconciliation. Three of these deserve special notice: (1) Many able observers and diligent collectors of fossils persuaded themselves that these objects never belonged to organisms of any kind, but should be regarded as mere “freaks of nature,” having no more connexion with any once living creature than the frost patterns on a window. They were styled “formed” or “figured” stones, “lapides sui generis,” and were asserted to be due to some inorganic imitative process within the earth or to the influence of the stars. (2) Observers who could not resist the evidence of their senses that the fossil shells once belonged to living animals, and who, at the same time, felt the necessity of accounting for the presence of marine organisms in the rocks of which the dry land is largely built up, sought a way out of the difficulty by invoking the Deluge of Noah. Here was a catastrophe which, they said, extended over the whole globe, and by which the entire dry land was submerged even up to the tops of the high hills. True, it only lasted one hundred and fifty days, but so little were the facts then appreciated that no difficulty seems to have been generally felt in crowding the accumulation of the thousands of feet of fossiliferous formations into that brief space of time. (3) Some more intelligent men in Italy, recognizing that these interpretations could not be upheld, fell back upon the idea that the rocks in which fossil shells are imbedded might have been heaped up by repeated and vigorous eruptions from volcanic centres. Certain modern eruptions in the Aegean Sea and in the Bay of Naples had drawn attention to the rapidity with which hills of considerable size could be piled around an active crater. It was argued that if Monte Nuovo near Naples could have been accumulated to a height of nearly 500 ft. in two days, there seemed to be no reason against believing that, during the time of the Flood, and in the course of the centuries that have elapsed since that event, the whole of the fossiliferous rocks might have been deposited. Unfortunately for this hypothesis it ignored the fact that these rocks do not consist of volcanic materials.
So long as the fundamental question remained in dispute as to the true character and history of the stratified portion of the earth’s crust containing organic remains, geology as a science could not begin its existence. The diluvialists (those who relied on the hypothesis of the Flood) held the field during the 16th, 17th and a great part of the 18th century. They were looked on as the champions of orthodoxy; and, on that account, they doubtless wielded much more influence than would have been gained by them from the force of their arguments. Yet during those ages there were not wanting occasional observers who did good service in combating the prevalent misconceptions, and in preparing the way for the ultimate triumph of truth. It was more especially in Italy, where many of the more striking phenomena of geology are conspicuously displayed, that the early pioneers of the science arose, and that for several generations the most marked progress was made towards placing the investigations of the past history of the earth upon a basis of careful observation and scientific deduction. One of the first of Leonardo da Vinci; Fracastorio; Falloppio. these leaders was Leonardo da Vinci (1452-1519), who, besides his achievements in painting, sculpture, architecture and engineering, contributed some notable observations regarding the great problem of the origin of fossil shells. He ridiculed the notion that these objects could have been formed by the influence of the stars, and maintained that they had once belonged to living organisms, and therefore that what is now land was formerly covered by the sea. Girolamo Fracastorio (1483-1553) claimed that the shells could never have been left by the Flood, which was a mere temporary inundation, but that they proved the mountains, in which they occur, to have been successively uplifted out of the sea. On the other hand, even an accomplished anatomist like Gabriello Falloppio (1523-1562) found it easier to believe that the bones of elephants, teeth of sharks, shells and other fossils were mere earthy inorganic concretions, than that the waters of Noah’s Flood could ever nave reached as far as Italy.
By much the most important member of this early band of Italian writers was undoubtedly Nicolas Steno (1631-1687), who, though born in Copenhagen, ultimately settled in Florence. Having made a European reputation as an anatomist, Nicolas Steno. his attention was drawn to geological problems by finding that the rocks of the north of Italy contained what appeared to be sharks’ teeth closely resembling those of a dog-fish, of which he had published the anatomy. Cautiously at first, for fear of offending orthodox opinions, but afterwards more boldly, he proclaimed his conviction that those objects had once been part of living animals, and that they threw light on some of the past history of the earth. He published in 1669 a small tract, De solido intra solidum naturaliter contento, in which he developed the ideas he had formed of this history from an attentive study of the rocks. He showed that the stratified formations of the hills and valleys consist of such materials as would be laid down in the form of sediment in turbid water; that where they contain marine productions this water is proved to have been the sea; that diversities in their composition point to commingling of currents, carrying different kinds of sediment of which the heaviest would first sink to the bottom. He made original and important observations on stratification, and laid down some of the fundamental axioms in stratigraphy. He reasoned that as the original position of strata was approximately horizontal, when they are found to be steeply inclined or vertical, or bent into arches, they have been disrupted by subterranean exhalations, or by the falling in of the roofs of underground cavernous spaces. It is to this alteration of the original position of the strata that the inequalities of the earth’s surface, such as mountains, are to be ascribed, though some have been formed by the outburst of fire, ashes and stones from inside the earth. Another effect of the dislocation has been to provide fissures, which serve as outlets for springs. Steno’s anatomical training peculiarly fitted him for dealing authoritatively with the question of the nature and origin of the fossils contained in the rocks. He had no hesitation in affirming that, even if no shells had ever been found living in the sea, the internal structure of these fossils would demonstrate that they once formed parts of living animals. And not only shells, but teeth, bones and skeletons of many kinds of fishes had been quarried out of the rocks, while some of the strata had skulls, horns and teeth of land-animals. Illustrating his general principles by a sketch of what he supposed to have been the past history of Tuscany, he added a series of diagrams which show how clearly he had conceived the essential elements of stratigraphy. He thought he could perceive the records of six successive phases in the evolution of the framework of that country, and was inclined to believe that a similar chronological sequence would be found all over the world. He anticipated the objections that would be brought against his views on account of the insuperable difficulty in granting the length of time that would be required for all the geographical vicissitudes which his interpretation required. He thought that many of the fossils must be as old as the time of the general deluge, but he was careful not to indulge in any speculation as to the antiquity of the earth.
To the Italian school, as especially typified in Steno, must be assigned the honour of having thus begun to lay firmly and truly the first foundation stones of the modern science of geology. The same school included Antonio Vallisneri Lazzaro Moro. (1661-1730), who surpassed his predecessors in his wider and more exact knowledge of the fossiliferous rocks that form the backbone of the Italian peninsula, which he contended were formed during a wide and prolonged submergence of the region, altogether different from the brief deluge of Noah. There was likewise Lazzaro Moro (1687-1740), who did good service against the diluvialists, but the fundamental feature of his system of nature lay in the preponderant part which, unaware of the great difference between volcanic materials and ordinary sediment, he assigned to volcanic action in the production of the sedimentary rocks of the earth’s crust. He supposed that in the beginning the globe was completely surrounded with water, beneath which the solid earth lay as a smooth ball. On the third day of creation, however, vast fires were kindled inside the globe, whereby the smooth surface of stone was broken up, and portions of it, appearing above the water, formed the earliest land. From that time onward, volcanic eruptions succeeded each other, not only on the emerged land, but on the sea-floor, over which the ejected material spread in an ever augmenting thickness of sedimentary strata. In this way Moro carried the history of the stratified rocks beyond the time of the Flood back to the Creation, which was supposed to have been some 1600 years earlier; and he brought it down to the present day, when fresh sedimentary deposits are continually accumulating. He thus incurred no censure from the ecclesiastical guardians of the faith, and he succeeded in attracting increased public attention to the problems of geology. The influence of his teaching, however, was subsequently in great part due to the Carmelite friar Generelli, who published an eloquent exposition of Moro’s views.
The Cosmogonists and Theories of the Earth.—While in Italy substantial progress was made in collecting information regarding the fossiliferous formations of that country, and in forming conclusions concerning them based upon more or less accurate observations, the tendency to mere fanciful speculation, which could not be wholly repressed in any country, reached a remarkable extravagance in England. In proportion as materials were yet lacking from which to construct a history of the evolution of our planet in accordance with the teaching of the church, imagination supplied the place of ascertained fact, and there appeared during the last twenty years of the 18th century a group of English cosmogonists, who, by the sensational character of their speculations, aroused general attention both in Britain and on the continent. It may be doubted, however, whether the effect of their writings was not to hinder the advance of true science by diverting men from the observation of nature into barren controversy over unrealities. It is not needful here to do more than mention the names of Thomas Burnet, whose Sacred Theory of the Earth appeared in 1681, and William Whiston, whose New Theory of the Earth was published in 1696. Hardly less fanciful than these writers, though his practical acquaintance with rocks and fossils was infinitely greater, was John Woodward, whose Essay towards a Natural History of the Earth dates from 1695. More important as a contribution to science was the catalogue of the large collection of fossils, which he had made from the rocks of England and which he bequeathed to the university of Cambridge. This catalogue appeared in 1728-1729 with the title of An attempt towards a Natural History of the Fossils of England.
A striking contrast to these cosmogonists is furnished by another group, which arose in France and Germany, and gave to the world the first rational ideas concerning the probable primeval evolution of our globe. The earliest of these pioneers was Descartes. the illustrious philosopher René Descartes (1596-1650). He propounded a scheme of cosmical development in which he represented the earth, like the other planets, to have been originally a mass of glowing material like the sun, and to have gradually cooled on the outside, while still retaining an incandescent, self-luminous nucleus. Yet with this noble conception, which modern science has accepted, Descartes could not shake himself free from the time-honoured error in regard to the origin of volcanic action. He thought that certain exhalations within the earth condense into oil, which, when in violent motion, enters into the subterranean cavities, where it passes into a kind of smoke. This smoke is from time to time ignited by a spark of fire and, pressing violently against its containing walls, gives rise to earthquakes. If the flame breaks through to the surface at the top of a mountain, it may escape with enormous energy, hurling forth much earth mingled with sulphur or bitumen, and thus producing a volcano. The mountain might burn for a long time until at last its store of fuel in the shape of sulphur or bitumen would be exhausted. Not only did the philosopher refrain from availing himself of the high internal temperature of the globe as the source of volcanic energy, he even did not make use of it as the cause of the ignition of his supposed internal fuel, but speculated on the kindling of the subterranean fires by the spirits or gases setting fire to the exhalations, or by the fall of masses of rock and the sparks produced by their friction or percussion.
The ideas of Descartes regarding planetary evolution were enlarged and made more definite by Wilhelm Gottfried Leibnitz (1646-1716), whose teaching has largely influenced all subsequent speculation on the subject. In his great tract, the Protogaea (published in 1749, Leibnitz. thirty-three years after his death), he traced the probable passage of our earth from an original condition of incandescent vapour into that of a smooth molten globe, which, by continuous cooling, acquired an external solid crust and rugose surface. He thought that the more ancient rocks, such as granite and gneiss, might be portions of the earliest outer crust; and that as the external solidification advanced, immense subterranean cavities were left which were filled with air and water. By the collapse of the roofs of these caverns, valleys might be originated at the surface, while the solid intervening walls would remain in place and form mountains. By the disruption of the crust, enormous bodies of water were launched over the surface of the earth, which swept vast quantities of sediment together, and thus gave rise to sedimentary deposits. After many vicissitudes of this kind, the terrestrial forces calmed down, and a more stable condition of things was established.