An important feature in the cosmogony of Leibnitz is the prominent place which he assigned to organic remains in the stratified rocks of the crust. Ridiculing the foolish attempts to account for the presence of these objects by calling them “sports of nature,” he showed that they are to be regarded as historical monuments; and he adduced a number of instances wherein successive platforms of strata, containing organic remains, bear witness to a series of advances and retreats of the sea. He recognized that some of the fossils appeared to have nothing like them in the living world of to-day, but some analogous forms might yet be found, he thought, in still unexplored parts of the earth; and even if no living representatives should ever be discovered, many types of animals might have undergone transformation during the great changes which had affected the surface of the earth. In spite of his clear realization of the vast store of potential energy residing within the highly heated interior of the earth, Leibnitz continued to regard volcanic action as due to the combustion of inflammable substances enclosed within the terrestrial crust, such as stone-coal, naphtha and sulphur.

Appealing to a much wider public than Descartes or Leibnitz, and basing his speculations on a wider acquaintance with the organic and inorganic realms of nature, G.L.L. de Buffon (1707-1788) was undoubtedly one of the most influential forces Buffon. that in Europe guided the growth of geological ideas during the 18th century. He published in 1749 a Theory of the Earth, in which he adopted views similar to those of Descartes and Leibnitz as to planetary evolution; but though he realized the importance of fossils as records of former conditions of the earth’s surface, he accounted for them by supposing that they had been deposited from a universal ocean, a large part of which had subsequently been engulfed into caverns in the interior of the globe. Thirty years later, after having laboured with skill and enthusiasm in all branches of natural history, he published another work, his famous Époques de la nature (1778), which is specially remarkable as the first attempt to deal with the history of the earth in a chronological manner, and to compute, on a basis of experiment, the antiquity of the several stages of this history. His experiments were made with globes of cast iron, and could not have yielded results of any value for his purpose; but in so far as his calculations were not mere random guesses but had some kind of foundation on experiment, they deserve respectful recognition. He divided the history of our earth into six periods of unequal duration, the whole comprising a period of some 70,000 or 75,000 years. He supposed that the stage of incandescence, before the globe had consolidated to the centre, lasted 2936 years, and that about 35,000 years elapsed before the surface had cooled sufficiently to be touched, and therefore to be capable of supporting living things. Terrestrial animal life, however, was not introduced until 55,000 or 60,000 years after the beginning of the world or about 15,000 years before our time. Looking into the future, he foresaw that, by continued refrigeration, our globe will eventually become colder than ice, and this fair face of nature, with its manifold varieties of plant and animal life, will perish after having existed for 132,000 years.

Buffon’s conception of the operation of the geological agents did not become broader or more accurate in the interval between the appearance of his two treatises. He still continued to believe in the lowering of the ocean by subsidence into vast subterranean cavities, with a consequent emergence of land. He still looked on volcanoes as due to the burning of “pyritous and combustible stones,” though he now called in the co-operation of electricity. He calculated that the first volcanoes could not arise until some 50,000 years after the beginning of the world, by which time a sufficient extent of dense vegetation had been buried in the earth to supply them with fuel. He appears to have had but an imperfect acquaintance with the literature of his own time. At least there can be little doubt that had he availed himself of the labours of his own countryman, Jean Etienne Guettard (1715-1786), of Giovanni Arduíno (1714-1795) in Italy, and of Johann Gottlob Lehmann (d. 1767) and George Christian Füchsel (1722-1773) in Germany, he would have been able to give to his “epochs” a more definite succession of events and a greater correspondence with the facts of nature.

Among the writers of the 18th century, who formed philosophical conceptions of the system of processes by which the life of our earth as a habitable globe is carried on, a foremost place must be assigned to James Hutton (1726-1797). Educated for the medical profession, James Hutton. he studied at Edinburgh and at Paris, and took his doctor’s degree at Leiden. But having inherited a small landed property in Berwickshire, he took to agriculture, and after putting his land into excellent order, let his farm and betook himself to Edinburgh, there to gratify the scientific tastes which he had developed early in life. He had been more especially led to study minerals and rocks, and to meditate on the problems which they suggest as to the constitution and history of the earth. His journeys in Britain and on the continent of Europe had furnished him with material for reflection; and he had gradually evolved a system or theory in which all the scattered facts could be arranged so as to show their mutual dependence and their place in the orderly mechanism of the world. He used to discuss his views with one or two of his friends, but refrained from publishing them to the world until, on the foundation of the Royal Society of Edinburgh, he communicated an outline of his doctrine to that learned body in 1785. Some years later he expanded this first essay into a larger work in two volumes, which were published in 1795 with the title of Theory of the Earth, with Proofs and Illustrations.

Hutton’s teaching has exercised a profound influence on modern geology. This influence, however, has arisen less from his own writings than from the account of his doctrines given by his friend John Playfair in the classic work entitled John Playfair. Illustrations of the Huttonian Theory, published in 1802. Hutton wrote in so prolix and obscure a style as rather to repel than attract readers. Playfair, on the other hand, expressed himself in such clear and graceful language as to command general attention, and to gain wide acceptance for his master’s views. Unlike the older cosmogonists, Hutton refrained from trying to explain the origin of things, and from speculations as to what might possibly have been the early history of our globe. He determined from the outset to interpret the past by what can be seen to be the present order of nature; and he refused to admit the operation of causes which cannot be shown to be part of the actual terrestrial system. Like other observers who had preceded him, he recognized in the various rocks composing the dry land evidence of former geographical conditions very different from those which now prevail. He saw that the vast majority of rocks consist of hardened sediments and must have been deposited in the sea. He could distinguish among them an older or Primary series, and a younger or Secondary series; and did not dispute the existence of a Tertiary series claimed by Peter Simon Pallas (1741-1811). He believed that these various aqueous accumulations had been consolidated by subterranean heat, that the oldest and lowest rocks had suffered most from this action, that into these more deep-seated masses subsequent veins and larger bodies of molten matter were injected from below, and thus that what was originally loose detritus eventually became changed in such crystalline schists as are now found in mountain-chains. In the course of these terrestrial revolutions sedimentary strata, originally more or less nearly horizontal, have been pushed upward, dislocated, crumpled, placed on end, and even elevated to form ranges of lofty mountains. Hutton looked upon these disturbances as due to the expansive power of subterranean heat; but he did not attempt to sketch the mechanism of the process, and he expressly declined to offer any conjecture as to how the land so elevated remains in that position. He thought that the interior of our planet may “be a fluid mass, melted, but unchanged by the action of heat”; and, far from connecting volcanoes with the combustion of inflammable substances, as had been the prevalent belief for so many centuries, he looked upon them as a beneficent provision of “spiracles to the subterranean furnace, in order to prevent the unnecessary elevation of land and fatal effects of earthquakes.”

A distinguishing feature of the Huttonian philosophy is to be seen in the breadth of its conceptions regarding the geological operations continually in progress on the surface of the globe. Hutton saw that the land is undergoing a ceaseless process of degradation, through the influence of the air, frost, rain, rivers and the sea, and that in course of time, if no countervailing agency should intervene, the whole of the dry land will be washed away into the sea. But he also perceived that this universal erosion is not everywhere carried on at the same rate; that it is specially active along the channels of torrents and rivers, and that, owing to this difference these channels are gradually deepened and widened, until the complicated valley-system of a country is carved out. He recognized that the detritus worn away from the land must be spread out over the floor of the sea, so as to form there strata similar to those that compose most of the dry land. As he could detect in the structure of land convincing evidence that former sea floors had been elevated to form the continents and islands of to-day, he could look forward to future ages, when the same subterranean agency which had raised up the present land would again be employed to uplift the bed of the existing ocean, thus to renew the surface of our earth as a habitable globe, and to start a fresh cycle of erosion and deposition.

Though Hutton was not unaware that organic remains abound in many of the stratified rocks, he left them out of consideration in the elaboration of his theory. It was otherwise with one of his French contemporaries, the illustrious J.B. Lamarck. Lamarck (1744-1829), who, after having attained great eminence as a botanist, turned to zoology when he was nearly fifty years of age, and before long rose to even greater distinction in that department of science. His share in the classification and description of the mollusca and in founding invertebrate palaeontology, his theory of organic evolution and his philosophical treatment of many biological questions have been tardily recognized, but his contributions to geology have been less generally acknowledged. When he accepted the “professorship of zoology; of insects, of worms and of microscopic animals” at the Museum of Natural History, Paris, in 1793, he at once entered with characteristic ardour and capacity into the new field of research then opened to him. In dealing with the mollusca he considered not merely the living but also the extinct forms, especially the abundant, varied and well-preserved genera and species furnished by the Tertiary deposits of the Paris basin, of which he published descriptions and plates that proved of essential service in the stratigraphical work of Cuvier and Alexandre Brongniart (1770-1847). His labours among these relics of ancient seas and lakes led him to ponder over the past history of the globe, and as he was seldom dilatory in making known the opinions he had formed, he communicated some of his conclusions to the National Institute in 1799. These, including a further elaboration of his views, he published in 1802 in a small volume entitled Hydrogéologie.

This treatise, though it did not reach a second edition and has never been reprinted, deserves an honourable place in geological literature. Its object, the author states, was to present some important and novel considerations, which he thought should form the basis of a true theory of the earth. He entirely agreed with the doctrine of the subaerial degradation of the land and the erosion of valleys by running water. Not even Playfair could have stated this doctrine more emphatically, and it is worthy of notice that Playfair’s Illustrations of the Huttonian Theory appeared in the same year with Lamarck’s book. The French naturalist, however, carried his conclusions so far as to take no account of any great movements of the terrestrial crust, which might have produced or modified the main physical features of the surface of the globe. He thought that all mountains, except such as were thrown up by volcanic agency or local accidents, have been cut out of plains, the original surfaces of which are indicated by the crests and summits of these elevations.

Lamarck, in reflecting upon the wide diffusion of fossil shells and the great height above the sea at which they are found, conceived the extraordinary idea that the ocean basin has been scoured out by the sea, and that, by an impulse communicated to the waters through the influence chiefly of the moon, the sea is slowly eating away the eastern margins of the continents, and throwing up detritus on their western coasts, and is thus gradually shifting its basin round the globe. He would not admit the operation of cataclysms; but insisted as strongly as Hutton on the continuity of natural processes, and on the necessity of explaining former changes of the earth’s surface by causes which can still be seen to be in operation. As might be anticipated from his previous studies, he brought living things and their remains into the forefront of his theory of the earth. He looked upon fossils as one of the chief means of comprehending the revolutions which the surface of the earth has undergone; and in his little volume he again and again dwells on the vast antiquity to which these revolutions bear witness. He acutely argues, from the condition of fossil shells, that they must have lived and died where their remains are now found.

In the last part of his treatise Lamarck advances some peculiar opinions in physics and chemistry, which he had broached eighteen years before, but which had met with no acceptance among the scientific men of his time. He believed that the tendency of all compound substances is to decay, and thereby to be resolved into their component constituents. Yet he saw that the visible crust of the earth consists almost wholly of compound bodies. He therefore set himself to solve the problem thus presented. Perceiving that the biological action of living organisms is constantly forming combinations of matter, which would never have otherwise come into existence, he proceeded to draw the extraordinary conclusion that the action of plant and animal life (the Pouvoir de la vie) upon the inorganic world is so universal and so potent, that the rocks and minerals which form the outer part of the earth’s crust are all, without exception, the result of the operations of once living bodies. Though this sweeping deduction must be allowed to detract from the value of Lamarck’s work, there can be no doubt that he realized, more fully than any one had done before him, the efficacy of plants and animals as agents of geological change.