B. Water.—The geological functions of the circulation of water through the air and between sea and land, and the action of the sea.

C. Life.—The part taken by plants and animals in preserving, destroying or reproducing geological formations.

The words destructive, reproductive and conservative, employed in describing the operations of the epigene agents, do not necessarily imply that anything useful to man is destroyed, reproduced or preserved. On the contrary, the destructive action of the atmosphere may turn barren rock into rich soil, while its reproductive effects sometimes turn rich land into barren desert. Again, the conservative influence of vegetation has sometimes for centuries retained as barren morass what might otherwise have become rich meadow or luxuriant woodland. The terms, therefore, are used in a strictly geological sense, to denote the removal and re-deposition of material, and its agency in preserving what lies beneath it.

(A) The Air.

As a geological agent, the air brings about changes partly by its component gases and partly by its movements. Its destructive action is both chemical and mechanical. The chemical changes are probably mainly, if not entirely, due to the moisture of the air, and particularly to the gases, vapours and organic matter which the moisture contains. Dry air seems to have little or no appreciable influence in promoting these reactions. As the changes in question are similar to those much more abundantly brought about by rain they are described in the following section under the division on rain.

Among the more recognizable mechanical changes effected in the atmosphere, one of considerable importance is to be seen in the result of great and rapid changes of temperature. Heat expands rocks, while cold contracts them. In countries with a great annual range of temperature, considerable difficulty is sometimes experienced in selecting building materials liable to be little affected by the alternate expansion and contraction, which prevents the joints of masonry from remaining close and tight. In dry tropical climates, where the days are intensely hot and the nights extremely cold, the rapid nocturnal contraction produces a strain so great as to rival frost in its influence upon the surface of exposed rocks, disintegrating them into sand, or causing them to crack or peel off in skins or irregular pieces. Dr Livingstone found in Africa (12° S. lat., 34° E. long.) that surfaces of rock which during the day were heated up to 137° Fahr., cooled so rapidly by radiation at night that, unable to sustain the strain of contraction, they split and threw off sharp angular fragments from a few ounces to 100 or 200 ℔ in weight. In temperate regions this action, though much less pronounced, still makes itself felt. In these climates, however, and still more in high latitudes, somewhat similar results are brought about by frost.

By its motion in wind the air drives loose sand over rocks, and in course of time abrades and smoothes them. “Desert polish” is the name given to the characteristic lustrous surface thus imparted. Holes are said to be drilled in window glass at Cape Cod by the same agency. Cavities are now and then hollowed out of rocks by the gyration in them of little fragments of stone or grains of sand kept in motion by the wind. Hurricanes form important geological agents upon land in uprooting trees, and thus sometimes impeding the drainage of a country and giving rise to the formation of peat mosses.

The reproductive action of the air arises partly from the effect of the chemical and mechanical disintegration involved in the process of “weathering,” and partly from the transporting power of wind and of aerial currents. The layer of soil, which covers so much of the surface of the land, is the result of the decay of the underlying rocks, mingled with mineral matter blown over the ground by wind, or washed thither by rain, and with the mouldering remains of plants and animals. The extent to which fine dust may be transported over the surface of the land can hardly be realized in countries clothed with a covering of vegetation, though even there, in dry weather during spring, clouds of dust may often be seen blown away by wind from bare ploughed fields. Intercepted by the leaves of plants and washed down to their roots by rain, this dust goes to increase the soil below. In arid climates, where dust clouds are dense and frequent, enormous quantities of fine mineral particles are thus borne along and accumulated. The remarkable deposit of “Loess,” which is sometimes more than 1500 ft. thick and covers extensive areas in China and other countries, is regarded as due to the drifting of dust by wind. Again the dunes of sand so abundant along the inner side of sandy sea-beaches in many different parts of the world are attributable to the same action.

(B) Water.