Three Kinds of RNA
In the first place, there are at least three different kinds of RNA. The largest quantity is a special kind called ribosomal RNA, or r-RNA. It is found in close conjunction with proteins and makes up the structural frame upon which the protein-synthesizing machinery is built. The r-RNA and the proteins to which it is firmly bound form the ribosomes, the RNA-rich microsomes that are attached to the endoplasmic reticulum. Proteins are synthesized on ribosomes. We shall see later what determines the differences among proteins and how these differences are dictated directly by RNA and indirectly by DNA.
Besides r-RNA, there is a kind of RNA called soluble RNA, or transfer RNA, or s-RNA. It combines with r-RNA to complete the sequence of events that synthesizes the proteins. A bond between r-RNA and s-RNA is established by a third RNA molecule called messenger RNA, or template RNA, or m-RNA. This m-RNA molecule is truly the messenger that carries the genetic message from DNA to the protein-synthesizing apparatus.
Dr. Michael Shimkin, a Temple University scientist, in his analogy has compared the DNA → RNA → protein sequence to the activities of a newspaper staff. DNA is the editor; m-RNA molecules are copyboys who carry the editorials to the typesetters, the r-RNA and s-RNA, who then take the “letters” of nucleic acid and set them into slots in accordance with the editor’s directions. There are also workers who melt down outworn letters and still other workers who make new letters for further use; these are the enzymes, special kinds of proteins. If we wish to continue the analogy, we may say that each kind of cell in the organism has a different subeditor, who writes that cell’s own editorial. Actually we might say that all cells have the same board of editors in common, but only one editor functions in any given type of cell. In biological terms this means that only a portion of all the cellular DNA is active in each cell.
The active DNA is the DNA that makes m-RNA that will carry instructions to the protein-synthesizing machinery of that type of cell. Cells of the same organism therefore differ from each other on the basis of the segment of DNA that is active in making m-RNA. Let us now see how we can use radioactive isotopes to investigate the synthesis of RNA.
Labeling RNA with a Radioactive Isotope
RNA synthesis is investigated with radioactive tracers in the same way as DNA synthesis. If we can mark, with a radioactive atom, a small molecule that is incorporated into newly formed RNA, we can then trace the course of the labeled RNA molecule with a radiation-detection device. DNA had one advantage in this regard—the fact that one compound, thymidine, was a precursor of DNA, a specific material that could be incorporated only into DNA. We do not know similar specific precursors of RNA. But we know several precursors that are predominantly incorporated into RNA; the most common of these are the nucleosides adenine, cytidine, and uridine, and the smaller molecule, orotic acid. All these precursors can be labeled with either ³H or ¹⁴C, and their incorporation into RNA can be measured.
Detecting RNA with Autoradiography
As in DNA synthesis, we can use autoradiography to follow the incorporation of precursors into RNA. By proper treatment of the tissues, we can make sure that all the radioactivity visible by autoradiography is due to labeled RNA, even though some of the precursor also enters DNA molecules. Even so, the kind of information obtained from autoradiographs of tissues exposed to RNA precursors is different from that obtained with DNA precursors. The advantage of high-resolution autoradiography in DNA studies is the possibility of identifying particular cells that are synthesizing nucleic acid. This advantage is apparently lost in the case of RNA. The reason is that, at any given time, only a few cells are making DNA, whereas practically all cells are synthesizing RNA constantly. The only exceptions are cells in the midpoint of mitosis. At the beginning (prophase) and at the end of cell division (telophase), RNA is synthesized. If we want a quantitative measurement of RNA synthesis, other methods, to be examined presently, are considerably more precise. But autoradiography can still give us valuable information.