If we look at cells soon after they have been exposed to an RNA precursor, we find that the radioactivity detectable by autoradiography is only in the nuclei of the cells. No radioactivity can be detected in the cytoplasm, although we know that the cytoplasm of living cells contains large amounts of r-RNA and s-RNA. One or two hours later, however, radioactive RNA appears in the cytoplasm as well as in the nucleus. What autoradiography is telling us is that RNA is made in the nucleus and then is slowly transferred to the cytoplasm.

Autoradiography cannot tell us whether the RNA that has been newly synthesized in the nuclei of cells is m-RNA, s-RNA, or r-RNA. The methods necessary to make this distinction are based on the chemical fractionation of the tissue, isolation of RNA, determination of its amount by quantitative analysis, and determination of the amount of radioactivity by physical methods. Let us examine these steps separately.

Figure 17 Injecting a mouse with a radioactive solution.

Chemical Fractionation of Tissue After an animal has been injected with a radioactive precursor of RNA, some of it will be incorporated into DNA as well as into RNA (remember that the precursors of RNA lack specificity), and part of the precursor will be broken down into smaller molecules. The injected animal can be sacrificed, and an organ or another tissue, for instance, the liver, can be removed. Then the liver is homogenized, that is, ground to a pulp with a modern version of the mortar and pestle. The homogenate (pulp) is treated with cold (weak) acid. Proteins and nucleic acids are insoluble in cold acids and therefore precipitate to the bottom of the test tube. All molecules that are soluble in a cold acid are left in the supernatant (the remaining liquid); among these are small molecules, like those of the RNA precursor. The precipitate (the solid material that settles to the bottom), now containing proteins and nucleic acids, is then treated with a strong alkali, for instance, sodium hydroxide. Alkali will digest RNA into smaller molecules but does not affect DNA. If we now add acid to the solution, DNA, being insoluble in acid, will precipitate again; RNA, having been broken down into small molecules, will remain in the supernatant. DNA can then be extracted from the precipitate by boiling in strong acid. Proteins from the tissue remain in the final residue.

We have now fractionated the tissue into four portions: the acid-soluble fraction (containing small molecules), RNA, DNA, and proteins. (The cell’s lipids and sugars come out during alcohol rinses between the weak acid and the alkali steps.) Chemical analysis allows us to measure precisely the amount of RNA or DNA in its respective fraction and therefore in the tissue or organ. The amount of radioactivity in the RNA fraction can then be determined by a technique known as liquid scintillation counting.

Liquid Scintillation Counting Liquid scintillation counting is the preferred method for the measurement of low-energy beta-emitting radioisotopes commonly used in cell-fractionation studies (see [Figure 18]). It is convenient, sensitive, and rapid for routine measurement of radiation in hydrocarbons, other organic compounds, and aqueous solutions containing such isotopes as ³H, ¹⁴C, and ³²P.

Liquid scintillation solutions share with other scintillating materials the property of converting into visible light the energy deposited in them by ionizing radiation. In theory, if a sample of a beta emitter is dissolved in a liquid scintillator solution, every beta particle emitted will be absorbed completely because the range of penetration of beta particles in liquids is quite short (ranging from 0.008 millimicron for ³H to 7.9 millimicrons for ³²P in a medium of unit density). The kinetic energy of the beta particles is largely used up in the ionization and excitation of the most abundant molecular species present, the solvent in which the scintillating material was dissolved. A fraction of the energy thus expended by each beta particle is transferred from excited solvent molecules to scintillator molecules; thus the electrons in the atoms of the scintillator molecules are raised to an excited (higher energy) state. When these electrons return to the ground, or unexcited, state, a fraction of them emit a photon of light. Thus each beta particle produces a burst of photons.

Figure 18 Technician placing a tray of samples in a liquid scintillation counter. The radioactivity of each sample is recorded as the trays revolve.