«Cet ouvrage servira à faire connaître par de nouveaux exemples combien les sciences sont utiles et respectables; il est d’ailleurs écrit avec le goût sage et l’élégance noble qui doit faire le caractère des éloges académiques, les matières les plus difficiles y sont exposées avec toute la clarté dont elles sont susceptibles, et les réflexions philosophiques que l’auteur a jointes à cet exposé précis et fidèle donnent à l’ensemble tout l’intérêt qu’on peut y désirer. Nous croyons en conséquence que cet ouvrage est très-digne de l’impression et qu’il mérite non-seulement l’approbation de l’Académie, mais la reconnaissance de ceux qui s’intéressent au progrès des sciences.»

Quelques semaines après, le 27 février 1773, le duc de la Vrillière écrivit à l’Académie:

«M. de Fouchy, secrétaire de l’Académie depuis trente ans, désire d’avoir un adjoint qui puisse le seconder dans ses travaux actuels, se mettre au fait sous ses yeux des difficultés de détail qui concernent l’Académie et lui succéder un jour dans cette place. J’ai mis sous les yeux du Roi la lettre que M. de Fouchy m’a écrite sur cet objet, il paraît juste à Sa Majesté de ne donner, pour adjoint au titulaire d’une place, qu’une personne qui lui convienne, et les longs services de M. de Fouchy semblent mériter tous les égards possibles à ce qu’il peut désirer par rapport à cette adjonction; il a jeté les yeux sur M. le marquis de Condorcet, associé mécanicien, dont il a déjà éprouvé les talents en lui confiant quelques articles de l’histoire de l’Académie, qu’on imprime actuellement et dont il connaît d’ailleurs le caractère doux et impartial, nécessaire au secrétaire d’une société savante; d’ailleurs le choix de M. de Fouchy paraît confirmé par la réputation que les ouvrages de M. de Condorcet lui ont faite dans l’Europe littéraire et par le suffrage unanime que le public a accordé aux éloges de plusieurs anciens académiciens que M. le marquis de Condorcet vient de faire paraître. Le Roi a donc jugé, Monsieur, et d’après les desseins de M. de Fouchy et d’après la connaissance qu’il a lui-même du mérite de M. de Condorcet, qu’il est propre à remplir la place dont il s’agit; cependant comme Sa Majesté désire d’avoir sur cet objet l’avis de l’Académie, elle lui ordonne de délibérer à huitaine si M. de Condorcet est en effet capable de cette place.

«Comme l’affaire dont il est question intéresse le secrétaire, c’est à vous, Monsieur, et non à lui que Sa Majesté m’a ordonné d’adresser cette lettre.»

Sur quoi il a été résolu de faire des observations à M. de la Vrillière, et M. Leroy a lu un projet de lettre qui fut approuvé. La copie de ce projet manque au procès-verbal, ainsi qu’une lettre adressée par Condorcet à ses confrères qui, dans la séance suivante, délibérant sur sa capacité, émirent un vote où Condorcet voulut voir l’expression libre et spontanée de leur choix.

Trois ans après cependant, lorsque Grandjean de Fouchy quitta définitivement ses fonctions, Condorcet, un peu tardivement scrupuleux, déclina par écrit toute prétention à réclamer sa place comme un droit acquis.

Après la lecture de sa lettre, il a prié l’Académie, dit le procès-verbal, d’engager M. Amelot à faire ordonner par le Roi qu’il soit procédé à l’élection pure et simple, sans avoir égard à son adjonction, et «j’ai été chargé, dit Grandjean de Fouchy, d’enregistrer l’écrit qu’il avait lu, qu’elle a cru devoir conserver comme un témoignage de l’attachement et de l’honnêteté de M. de Condorcet.» La lutte dans ces circonstances était évidemment impossible et la candidature de Bailly ne fut pas même produite.

Les écrits mathématiques de Condorcet doivent être lus avec précaution; quels qu’aient été pour eux les suffrages et les applaudissements des contemporains les plus illustres, la postérité impartiale et sympathique à sa mémoire conserve cependant le droit de les juger. Aucun d’eux ne s’élève au-dessus du médiocre, presque complétement oubliés aujourd’hui ils prouvent seulement, avec l’ouverture de son esprit, la solidité de ses premières études.

L’ouvrage de Condorcet sur la Probabilité des jugements a seul conservé quelque célébrité. Laplace, Poisson et plus récemment M. Cournot se sont hasardés après lui sur ce terrain, le plus glissant peut-être où puisse se placer un géomètre, et ni le génie de l’un ni l’habileté des autres ne leur a permis de s’y établir solidement.

Lorsqu’une urne contient des boules blanches et des boules noires en nombre et en proportion connus, on peut aisément calculer quelle est, dans un nombre donné de tirages, la probabilité d’obtenir un résultat désigné à l’avance. Par des principes moins évidents mais tout aussi certains, le résultat observé du tirage révèle la composition probable de l’urne et les chances d’erreurs diminuent indéfiniment quand on accroît le nombre des épreuves. Si l’on a vu par exemple, sur trois millions de tirages, une urne qui contient trois boules donner 2,000,175 fois une boule blanche et 999,825 fois une noire, il est extrêmement probable, certain pour ainsi dire, que deux des boules sont blanches et la troisième noire.