Ad elucidationem et explicationem quæstionis 25. iuxta methodum Diophanti quam Bachetus similiter prætermisit[37] quærenda sunt duo triangula rectangula ut productum sub hypotenusa et perpendiculo unius ad productum sub hypotenusa et pelpendiculo alterius habeat rationem datam.

Quæ sanè quæstio diù nos torsit et verò difficillimam quilibet tentando experietur, sed tandem patuit generalis ad ipsius solutionem methodus.

Quserantur duo triangula ut rectangulum sub hypotenusa unius et perpendiculo, rectanguli sub hypotenusa alterius et perpendiculo sit duplum.

Fingatur unum ex triangulis ab A et B. alterum ab A et D. Rectangulum sub hypotenusa prioris et perpendiculo erit B in A cubum bis + B cub. in A. bis, rectangulum verò sub hypotenusa posterioris et perpendiculo erit D. in A. C. bis + D. C. in A. bis, cum igitur B in A. C. bis + B. C. in A bis sit duplŭ rectanguli D in A. C. bis + D. C. in A. bis, ergo B in A. C. + B. C. in A. æquabitur D. in A. C. bis + D. C. in A. bis et omnibus abs A divisis fiet B in A. quadratum + B. C. æquale D. in A Q bis + D. C. bis et per antithesin D. C. bis — B. C. æquabitur B. in A Q. — D. in A. Q. bis, si igitur D. C. — B bis C. divisum per B — D bis æquetur quadrato soluta erit quæstio.

Quærendi igitur duo numeri loco ipsorum B et D, eâ conditione ut duplum cubi unius — alio divisum vel multiplicatum (eodem enim res recidit) per duplum posterioris primo faciat quadratum[38], ponatur unus esse 1N + 1. Alter 1 cubus duplus prioris — cubo à posteriore facit 1 + 6N + 6q + 2C duplus autem posterioris — priore facit 1 — 1N. ergo si ducas 1 — 1N in 1 + 6N + 6q — 2C fiet qualdratus, productŭ illud æquatur 1 + 5N — 4C — 2qq. Quod æquandŭ quadrato ab 5 / 2 N — 1 — 25 / 8 q. et omnia statim constabŭt, propositio autem ad omnes rationes extendetur si loco unius ex quærendis numeris ponatur A + excessu maioris rationis termini supra minorem, et loco alterius ille ipse excessus ut iam à nobis in ratione dupla est factum. Hac quippe ratione semper unitatum numnerus evadet quadratus et æquatio erit proclivis. Hoc peracto invenientur duo numeri qui ipsos B et D reprtesentabunt et ad primam quæstionem fiel reditus. Retractanti quæ hucusque ad 25 quæstionem scripsimus visutr erat statim omnia delere quia abductio ad problema quod perfecimus non convenit quæstioni nostræ. quia tamen quæstionem aliam ad quam malè præsens problema adduxeramus rectè construximus, non tam operam perdidimus, quam malè collocavimus, et ideo maneat scriptura marginalis intacta.

Quæstionem ipsam Diophantæam novo iterum examini subiicientes et methodum nostram sedulò consulentes tandem generaliter solvimus. Exemplum tantum subiiciemus confisi numeros ipsos satis indicatuiros non sorti, sed arti solutionem deberi. in propositione Diophanti quærenda duo triangula rectangula ea conditione ut productum sub hypotenusa unius et perpendiculo ad productum sub hypotenusa et perpendiculo alterius habeat ratioinem quam 5 ad 1. En duo illa triangula, pritnum cuius hypotenusa 48543669109. basis 36083779309. perpendiculum 32472275580. secundum cuius hypotenusa 42636752938. basis 41990695480. perpendiculum 7394200038.

Перевод:

При рассмотрении вопроса 25 [у нас задача V 22 — И. Б. ] Баше, как и в предыдущем случае, оставил в стороне метод Диофанта, который нужно еще выявить и объяснить. Нужно найти два прямоугольных треугольника таких, чтобы произведение катета и гипотенузы одного из них имело заданное отношение к произведению катета и гипотенузы другого.

Этот вопрос долго нас мучил, и тот, кто попробует его решить, сможет убедиться, что он действительно труден, по наконец был открыт метод общего его решения.

Пусть требуется найти два треугольника таких, что произведение катета и гипотенузы одного из них вдвое больше произведения гипотенузы и катета другого.