und diesen selbst wieder, entsprechend den Erläuterungen des §. 2, in zwei Bestandtheile zerspalten, indem wir nämlich A gleich A + _i_B setzen und nun A [formula] und _i_B [formula] gesondert betrachten. Hiernach haben wir im Ganzen drei Fälle auseinanderzuhalten.

1) Wenn es sich um den Typus A [formula] handelt, so haben wir bei [formula] eine Quelle von der Ergiebigkeit 2 A [formula], bei [formula] eine solche von der Ergiebigkeit [formula] A [formula] anzubringen. Man denke sich zu dem Zwecke die [formula]-Ebene mit einer unendlich dünnen, gleichförmigen, elektricitätsleitenden Schicht überdeckt. Dann wird die entsprechende Bewegungsform offenbar realisirt, indem wir bei [formula] den einen, bei [formula] den anderen Pol einer galvanischen Batterie von zweckmässig gewählter Stärke aufsetzen(2).—Man sieht zugleich, wesshalb das Residuum von [formula] demjenigen von [formula] entgegengesetzt gleich sein muss: da der Strömungszustand stationär sein soll, muss an der einen Stelle ebenso viel Elektricität zugeführt werden, als an der anderen abströmt. Derselbe Grund gilt, wie man sofort erkennt, für den entsprechenden Satz bei beliebig vielen logarithmischen Unendlichkeitspuncten, wobei allerdings zunächst nur von den rein imaginären Theilen der betreffenden Residua die Rede ist (welche den von den Unendlichkeitspunkten ausgehenden Quellenbewegungen entsprechen).

2) Im zweiten Falle (wo _i_B [formula] gegeben ist) wird die experimentelle Anordnung etwas schwieriger. Das einfachste Schema ist dieses, dass man [formula] und [formula] durch eine sich selbst nicht schneidende Curve verbindet und nun dafür sorgt, dass diese Curve der Sitz einer constanten elektromotorischen Kraft sei. Es entwickelt sich dann in der [formula]-Ebene eine Strömung, welche bei [formula] und [formula] Wirbelpunkte aufweist, welche überall sonst stetig verläuft, und aus der man durch Integration als zugehöriges Geschwindigkeitspotential eine Function findet, welche bei jeder Umkreisung von [formula] oder [formula] um einen gewissen Periodicitätsmodul wächst. Von diesem Geschwindigkeitspotential ist dabei das nothwendig eindeutige elektrostatische Potential wohl zu unterscheiden. Die Curve, welche [formula] und [formula] verbindet, ist für das letztere eine Unstetigkeitscurve, und wird eben hierdurch die Eindeutigkeit des elektrostatischen Potentials ermöglicht(3).

[Illustration: Fig. 11.]

Fig. 11.

Ich weiss nicht, ob es eine experimentelle Anordnung giebt, um dieses einfachste Schema zu realisiren. Es scheint, dass man umständlicher zu Werke gehen muss. Denken wir zuvörderst etwa an thermoelektrische Ströme. Wir wollen die [formula]-Ebene zum Theil mit dem Materiale I, zum Theil mit dem Materiale II überdecken und die Stärke der überdeckenden Schichten dabei so bemessen, dass der specifische Leitungswiderstand überall derselbe sei. Wenn wir dann dafür sorgen, dass die beiden durch [formula] und [formula] von einander getrennten Theile der Contour, in welcher die zweierlei Materialien zusammenstossen, beide auf constanten, unter sich verschiedenen Temperaturen gehalten werden, so wird in der That eine elektrische Strömung entstehen, wie wir sie haben wollen. Dabei weist das elektrostatische Potential, nach den Vorstellungen, die man der Lehre von der Thermoelektricität zu Grunde legt, an beiden Theilen der genannten Contour Unstetigkeiten auf.—Noch complicirter scheint es, elektrische Ströme zu benutzen, wie sie die gewöhnlichen galvanischen Elemente liefern. Man muss die Ebene dann durch mindestens drei Curven, welche von [formula] nach [formula] verlaufen, in Theile zerlegen und zwei dieser Theile mit metallischen Belegen, den dritten mit einem feuchten Leiter überdecken. Man vergleiche hierzu die Figur 12.

[Illustration: Fig. 12.]

Fig. 12.

Durch alle diese Anordnungen hindurch ist von Vorne herein ersichtlich, dass die beiden bei [formula] und [formula] auftretenden Wirbelpuncte in der That entgegengesetzt gleiche Intensität haben müssen. Aus ähnlichen Gründen wird die Gesammtintensität sämmtlicher Wirbel bei beliebig vielen gegebenen Wirbelpuncten immer gleich Null sein, und ist dadurch der Satz von dem Verschwinden der Summe aller logarithmischen Residuen, auch was den reellen Theil dieser Residuen angeht, auf physikalisch evidente Gründe zurückgeführt.

3) Die Bewegungsformen, welche den algebraischen Typen [formula] entsprechen, mögen den Entwickelungen des §. 3 zufolge aus den eben betrachteten durch Grenzübergang gewonnen werden. Es wird diess natürlich nur mit einer gewissen Annäherung geschehen können. Man setze z. B. [formula] Drähte, in welche die Pole einer galvanischen Batterie auslaufen, dicht bei einander auf die [formula]-Ebene auf. Dann entsteht eine Strömung, welche in einiger Entfernung von den Drahtenden mit derjenigen merklich zusammenfällt, welche einem algebraischen Unstetigkeitspunkte von der Multiplicität [formula] entspricht. Zugleich ergiebt sich eine Ergänzung unserer obigen Darstellung. Man wird die galvanische Batterie sehr stark nehmen müssen, wenn bei der erwähnten Anordnung noch eine mittlere elektrische Strömung zu Stande kommen soll. Es entspricht diess dem von analytischer Seite wohlbekannten Satze, dass die Residua logarithmischer Unendlichkeitspuncte selbst in’s Unendliche wachsen müssen, wenn beim Zusammenfallen der logarithmischen ein algebraischer Unstetigkeitspunkt entstehen soll.—Ich gehe hier in kein weiteres Detail, da es im Folgenden allein darauf ankommt, dass auf Grund der Figuren 6-9 das allgemeine Princip verstanden wird.